On this page you can get a detailed analysis of a word or phrase, produced by the best artificial intelligence technology to date:
общая лексика
секондарный идеал
[ai'diəl]
общая лексика
абсолютный
дивизор
идеал
идеальный
мысленный
нереальный
несобственный
теоретический
прилагательное
общая лексика
идеальный
отличный
совершенный
превосходный
воображаемый
абстрактный
мысленный
нереальный
неосуществимый
идеальный, совершенный
воображаемый, мысленный
философия
идеалистический
синоним
существительное
[ai'diəl]
общая лексика
идеал
верх совершенства
образец
философия
идеальное
совершенное
синоним
математика
максимальный фильтр
ультрафильтр
In mathematics, particularly measure theory, a 𝜎-ideal, or sigma ideal, of a sigma-algebra (𝜎, read "sigma," means countable in this context) is a subset with certain desirable closure properties. It is a special type of ideal. Its most frequent application is in probability theory.
Let be a measurable space (meaning is a 𝜎-algebra of subsets of ). A subset of is a 𝜎-ideal if the following properties are satisfied:
Briefly, a sigma-ideal must contain the empty set and contain subsets and countable unions of its elements. The concept of 𝜎-ideal is dual to that of a countably complete (𝜎-) filter.
If a measure is given on the set of -negligible sets ( such that ) is a 𝜎-ideal.
The notion can be generalized to preorders with a bottom element as follows: is a 𝜎-ideal of just when
(i')
(ii') implies and
(iii') given a sequence there exists some such that for each
Thus contains the bottom element, is downward closed, and satisfies a countable analogue of the property of being upwards directed.
A 𝜎-ideal of a set is a 𝜎-ideal of the power set of That is, when no 𝜎-algebra is specified, then one simply takes the full power set of the underlying set. For example, the meager subsets of a topological space are those in the 𝜎-ideal generated by the collection of closed subsets with empty interior.